
LA-UR-21-26873
Approved for public release; distribution is unlimited.

Title: Secure System Composition and Type Checking using Cryptographic Proofs

Author(s): Barrack, Daniel Abraham

Intended for: For discussion with other ZKSnark researchers

Issued: 2021-07-16

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

 1 1Managed by Triad National Security, LLC., for the U.S. Department of Energy’s NNSA.

Secure System Composition
and Type Checking using
Cryptographic Proofs

Mentor: Michael J. Dixon
Co-Mentor: Boris Gelfand

Dani Barrack
A-4: Advanced Research in Cyber Systems
Email: dbarrack@lanl.gov

June 21st, 2021

 2

We can use formal methods to verify that systems compose correctly
without the possibility of incorrect behavior.

This means exhaustively checking that System A’s postconditions agree
with System B’s preconditions. If so, it is safe to compose.

Normal Setting: Every computational path must be accounted for and
checked. Verification cost (time) is multiplicative across systems.
•

Cost = |S1|∗|S2 |∗ … ∗|Sn|

Challenge: Formally Verifying System Composition

Outputs: Model Inputs: Model
(properly trained)

Postcondition Precondition
System A:

Train ML Model

System B:

Classify Points

 3

Zero-knowledge proofs can be used to provide type checking
guarantees of input/output properties without exposing secrets.
Verification can be done modularly so that the cost is additive.

Cost = |S1|+|S2|+ …+|Sn|

Bad proofs and inputs can still exist, but now are cryptographically
(exponentially) hard to find and exploit.

Solution: Assuring Safe Composition via zkSNARKs

ZKP
Verifier

Outputs: Trained model Inputs: Trained model
Postcondition Precondition

zkSNARK proving model is valid

System A:

Train ML Model

System B:

Classify Points

 4

Preconditions and Postconditions with Types
Type MLModel =
 (w : Weights, error(w) < 0.05, log : AuditLog, execute(log) == w)
trainModel : (x : [Input]) -> MLModel

We can generate proofs (or an audit log) of desired properties (e.g. functional
correctness) and include them with input to other functions.

This allows us to use a dependent type to assure that only models that were actually
trained on actual data and are within a certain error threshold can be used by a
classifier.

The audit log and its proof would be huge. Instead, we can use a super small
zkSNARK to prove this dependent type and pass it along instead. We only need to
handle the case where the check fails.

classifyPoint : (y : Input, model : MLModel) -> Class

 5

Preconditions and Postconditions with Types
Type MLModel =
 (w : Weights, error(w) < 0.05, log : AuditLog, execute(log) == w)
trainModel : (x : [Input]) -> MLModel

classifyPoint : (y : Input, model : MLModel, verif : ZKPVerifier) -> IO Class

zkp : ZKP

We can generate proofs (or an audit log) of desired properties (e.g. functional
correctness) and include them with input to other functions.

This allows us to use a dependent type to assure that only models that were actually
trained on actual data and are within a certain error threshold can be used by a
classifier.

The audit log and its proof would be huge. Instead, we can use a super small
zkSNARK to prove this dependent type and pass it along instead. We only need to
handle the case where the check fails.

 6

Dependent Type Replacement by ZKPs

 7

Benefit & Capability
Using zero-knowledge proofs we can combine systems while
preventing certain incorrect behaviors relating to mismatched outputs
and input constraints.

Portable proofs artificially
extends our trusted
computing base beyond
just our own system

ZKPs give fine-grained
control over which bits of
information to keep
secret and which to prove

ZKPs enforce system
compatibility without the
expense of manually
proving correctness

 8

Project Roadmap

1. Prototype and test program interoperability
– Manually implement skeleton code in place of zero-knowledge proofs

to interact with example program

2. Implement constraint related ZKP gadgets
– Constraints capture type information that is immediately useful to the

test program

3. Develop and set up prototype demonstrations
– Replace skeleton code with handcrafted ZKP gadgets
– Develop prototype compiler to read type annotations from file and

generate constraints
4. Benchmark and Evaluate

 9

Backup

 10

 < 20

+ *

*

 1 <

15

 < 20 1 <

and

and

3

18 4511 1 1

8101 1

Our function as a circuit

 11

 < 20

+ *

*

 1 <

15

 < 20 1 <

and

and

3

18 4511 1 1

8101 1

A redacted circuit with zkSNARKs

 12

 < 20

+ *

*

 1 <

15

 < 20 1 <

and

and

3

18 4511 1 1

8101 1

A redacted circuit with zkSNARKs

9?6?

 13

Example. You want to prove that you have beaten Where’s Waldo?
• Traditional Proof: Point to Waldo to demonstrate you know where he is

• Not zero-knowledge!
This kind of proof leaks all information about his location, much more than
simply that you have knowledge of the location

Zero-Knowledge Proof for Where’s Waldo?

 14

Zero-knowledge proof for “Where’s Waldo?”
1. Cut out a Waldo shaped hole in a much larger piece of paper
2. Position the hole over Waldo’s location

Zero-Knowledge Proof for Where’s Waldo?

Slide under paper

This precisely obfuscates
Waldo’s location while
demonstrating knowledge
of his whereabouts!

To adversaries, the book underneath could
hypothetically be in any random orientation

 15

Completeness vs. Soundness

Typical proof systems have 100% completeness and 100% soundness

Completeness: ℙ[true statement AND verifier accepts] = 1
“Everything true is provable”

Soundness: ℙ[false statement AND verifier rejects] = 1
“False statements aren’t provable”

 16

Cryptographic Proof Systems

Cryptographic proof systems have variable completeness and
soundness. For non-interactive zero-knowledge proofs we care about:

(Completeness) ℙ[true statement AND verifier accepts] = 1
“Everything true is provable”

(Soundness) ℙ[false statement AND verifier rejects] = 1 - ε
“Low chance that a proof of a false statement is
encountered”

We sacrifice minimal amount of soundness (have to break crypto to
produce counter-example) in order to get valuable proof properties

 17

Zero-Knowledge Proofs and Verifiable Computation

Zero-knowledge proofs (ZKPs) allow us to prove that a claim IS true
without revealing WHY it is true, even if the prover is untrusted and
malicious.
zkSNARKs are special ZKPs that are tiny and non-interactive

O(1)
size

O(n*log(n)^k)
size

O(n)
size

Inputs:
Logs

Schematics
Program Traces

Signals
Encryption Keys

Attestations
etc.

Outputs:
Results

&
ZK Proof of

Computational
Integrity

Homomorphically Encrypted* *with tweaks

 18

1

a

t0

b

t1

zkSNARK Construction for Program Verification [BCGTV13]

Computation

Arithmetic
Circuit

R1CS

QAP

LPCP

LIP

zkSNARK

int myFunction(int a) {
int b=a*a-4;
return 3*b+a;

}

π

S • A * S • B = S • C
1

a

t0

b

t1

0

1

0

0

0

0

1

0

0

0

1

a

t0

b

t1

0

1

0

0

0

Zero Knowledge Added

Succinctness Added

Interactivity Removed

zkSNARK for
Program Integrity

Proof Representation
Of Program Execution

Rank-1 Constraint System (R1CS):

libsnark
backend

Prover
Binary

Verifier
Binary

libsnark

 19

Theory Behind ZKPs
(Backup)

 20

PCPs & Hardness of Approximation

Intuition
Efficient approximation scheme for a problem
implies that it an easy to create a good enough
looking “fake” solution (witness)

So,
Hard to approximate

⟺
Hard to create a convincing fake witness that

appears optimal
⟺

Good witnesses imply that best solutions exist Easy to find Hard to find

← Gap →

 21

NIZK Overview

 22

1. Publish homomorphically encrypted building blocks for a program

2. Prover blindly re-assembles them to compute the desired circuit (e.g. an
evaluation of the PCP circuit) and adding random blinds where appropriate

3. Verifier checks content by simply decrypting

Circuit Evaluation

